

Propulsion System Leads the Aviation Revolution (Milestones in Aviation)

Glenn Research Center

Aeronautics Directorate

at Lewis Field

2

Propulsion System Leads the Aviation Revolution (Future Directions)

Glenn Research Center

Aeronautics Directorate

at Lewis Field

NASA

1/4/2000

GRC Technology Infusion

Glenn Research Center

Aeronautics Directorate

at Lewis Field

GRC Aeronautics

FOCUSED PROGRAMS

Glenn Research Center

Aeronautics Directorate

at Lewis Field

4/4/2000

GRC Space

Communications

Modeling/Analyses
Antennas
Solid-state devices
Digital communications
Vacuum electronics
Satellite/terrestrial networks
Spectrum Management

Space Transportation

Advanced Concepts/Analyses
Airbreathing Propulsion
Propulsion Materials/Structures
Subsystems (Power, Actuators)
Propellants
Vehicle Health Management

Microgravity Science

Fluid Physics
Combustion science
BioScience and Engineering
Acceleration measurements
Flight exp. development & operations
Space Station utilization

Power

Architecture/Analyses
Generation
Storage
Distribution/Control
Environmental durability
Space Station support

Space Propulsion

Modeling/Analyses
Electric
Chemical
Thrusters/Controls & Electronics/Feed Sys.

Glenn Research Center

Aeronautics Directorate

at Lewis Field

Terminal of the Future

NASA's Aeropropulsion Vision For 21st-Century Aircraft

Aeropropulsion-NASA's Future Direction

Revolutionary Aircraft Enabled by Aeropropulsion and Power Revolutions

Glenn Research Center

Aeronautics Directorate

at Lewis Field

Gas Turbine Revolution

Glenn Research Center

Aeronautics Directorate

at Lewis Field

11 4/4/2000

Ultraclean, Quiet, Intelligent Engine: Fundamental Technologies

Intelligent Engine System Asset Management

- Embedded micro- and nanosensors
- Coupled simulation and data-feedback health and performance management
- Autonomic engine control strategies

Glenn Research Center

Aeronautics Directorate

at Lewis Field

Ultraclean, Quiet, Intelligent Engine: Fundamental Technologies

- Microflow management
- Acoustic masking
- Innovative combustion strategy
- Morphing structures
- Adaptive/Self Healing structures
- Adaptive engine cycles

13

Glenn Research Center

Aeronautics Directorate

at Lewis Field

4/2000

Ultraclean, Quiet, Intelligent Engine: Fundamental Technologies

Intelligent Computing

- 0-D modeling zooming to 3-D fidelity
- Probabilistic design and analysis
- Coupling of multiple disciplines: fluids, structures, thermal
- · Virtual numerical test cell

Glenn Research Center

Aeronautics Directorate

NASA

14

at Lewis Field

Variable Capability, Ultra High Bypass Ratio Intelligent Engines: Fundamental Technologies

Exoskeletal Engine

- · Outer shell rotating
- · All composite engine
- Magnetic bearings

Glenn Research Center

Aeronautics Directorate

at Lewis Field

Outer Composite

Shell

15

Engine Architecture Revolution (Distributed Vectored Propulsion)

Glenn Research Center

Aeronautics Directorate

at Lewis Field

16

Distributed Vectored Propulsion

Distributed Engines

- Multiple low-cost, low-power engines deployed along wing
- Distributed thrust and thrust vectoring
- Aircraft boundary layer ingestion
- Microturbine engines distributed over aircraft wings

Mini-engines: High-efficiency cores powering multiple fans

Silicon carbide microturbine

Glenn Research Center

Aeronautics Directorate

at Lewis Field

NASA

17

Distributed Vectored Propulsion

Multifan Core

- High-efficiency cores powering multiple fans (propulsors)
- Advanced mechanical power transmission

Glenn Research Center

Aeronautics Directorate

at Lewis Field

10

Distributed Vectored Propulsion

Distributed Exhaust

- High-aspect-ratio nozzles embedded in the wing trailing edge
- Ducted polymer matrix composite (PMC) nozzles
- Embedded inlets and nozzles employing flow control

Glenn Research Center

Aeronautics Directorate

at Lewis Field

19

Fuel Infrastructure and Alternative Energy and Power Revolutions (Hybrid Combustion and Electric Propulsion)

Glenn Research Center

Aeronautics Directorate

at Lewis Field

Alternative Energy Propulsion

Fuel Cell-Powered Electric Propulsion System

- Proton exchange membrane (PEM) fuel cell
- Zero NO_x and HC emissions
- Water emission or use of chemical reformer

Basic hydrogen PEM fuel cell operation and hardware

Glenn Research Center

Aeronautics Directorate

at Lewis Field

21

Alternative Energy Propulsion

Potential Fuel Cell-Enabled Electric Propulsion

Glenn Research Center

Aeronautics Directorate

at Lewis Field

Alternative Energy Propulsion

Hybrid Combustion and Electric

- Takeoff thrust-augmenting auxiliary power unit (APU)
- Onboard electric power for zero emissions fan thrust

Alternative Energy Propulsion

Fuel Cell Onboard Electric Power

- Multiple fuel options including conventional hydrocarbon, hydrogen, and solid oxide
- Shared structural components with aircraft

Glenn Research Center

Aeronautics Directorate

at Lewis Field

Summary

Twenty-first-century aeropropulsion and power research will enable new transport engine and aircraft systems.

• Emerging ultralow noise and emissions with the use of intelligent turbofans

Future distributed vectored propulsion with 24-hour operations and greater community mobility

 Research in hybrid combustion and electric propulsion systems leading to silent aircraft with near-zero emissions

 The culmination of these revolutions will deliver an allelectric-powered propulsion system with zero-impact emissions and noise and high-capacity, on-demand operation

Glenn Research Center

Aeronautics Directorate

at Lewis Field

25